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WHY PATTERN SEARCH WORKS*

ROBERT MICHAEL LEWIS t, VIRGINIA TORCZON$, AND MICHAEL W. TROSSET§

Abstract. Pattern search methods are a class of direct search methods for nonlinear optimization.

Since the introduction of the original pattern search methods in the late 1950s and early 1960s, they have

remained popular with users due to their simplicity and the fact that they work well in practice on a variety

of problems. More recently, the fact that they are provably convergent has generated renewed interest in the

nonlinear programming community. The purpose of this article is to describe what pattern search methods

are and why they work.
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1. Introduction. Pattern search methods are a class of direct search methods for nonlinear optimiza-

tion. Since the introduction of the original pattern search methods in the late 1950s and early 1960s [2, 5],

they have remained popular with users due to their simplicity and the fact that they work well in practice

on a variety of problems. More recently, the fact that they are provably convergent has generated renewed

interest in the nonlinear programming community.

The purpose of this article is to describe what pattern search methods arc and why they work. Much

of our past work on pattern search methods was guided by a desire to unify a variety of existing algorithms

and provide them with a common convergence theory. Unfortunately, the unification of this broad class

of algorithms requires a technical framework that obscures the features that distinguish pattern search

algorithms and make them work. We hope here to give a clearer explanation of these ideas. Space does not

allow us to do justice to the history of these methods and all the work relating to them; this will be the

subject of a lengthier review elsewhere; for a historical perspective, see [17].

2. A Simple Example of Pattern Search. We begin our discussion with a simple instance of a

pattern search algorithm for unconstrained minimization: minimize f(x). At iteration k, wc have an iterate

xk E/R" and a step-length parameter A k > 0. Let e_, i = 1,..., n, denote the standard unit basis vectors.

We successively look at the points x+ = xk + Ake_, i = 1,..., n, until we find x+ for which f(x+) < f(xk).

Fig. 2.1 illustrates the set of points among which we search for x+ for n = 2. This set of points is an

instance of what we call a pattern, from which pattern search takes its name. If wc fred no x+ such that

f(x+) < f(xk), then wc reduce A k by a half and continue; otherwise, we leave the step-length parameter

alone, setting Ak+ 1 ----A k and Xk+l = x+. In the latter case wc can also increase the step-length parameter,

say, by a factor of 2, if wc feel a longer step might be justified. We repeat the iteration just described until

Ak is deemed sufficiently small.
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FIG. 2.1. A simple instance o/ patt_:rn search

This simple example illustrates two attractive features of pattern search algorithms:

• They can be extremely simple to specify and implement.

• No explicit estimate of the derivative nor anything like a Taylor's series appears in the algorithm.

This makes these algorithms useful in situations where derivatives are not available and finite-

difference derivatives are unreliable, such as when f(x) is noisy.

These qualities have made pattern search algorithms popular with users. Yet despite their seeming simplicity

and heuristic nature and the fact that they do not have explicit recourse to the derivatives of f(x), pattern

search algorithms possess global convergence properties that are almost as strong as those of comparable

line-search and trust-region algorithms. In this article we will attempt to explain this perhaps surprising
fact.

Before turning to the discussion of how this can be, we ne te some further features of pattern search

which are manifest in this simple example.

• We require only simple decrease in f(x). In fact, we do =not even need to know f(x) as a numerical

value, provided we can make the assessment that f(x+) is an improvement on f(xk).

• If we are lucky, we need only a single evaluation of f(x) in any given iteration. Once we find an x+

for which f(x+) < f(xk), we can accept it and proceed On the other hand, in the worst case we

will look in quite a few directions (2n, for this example) before we try shorter steps.

• The steps that are allowed are restricted in direction and length. In this example, the steps must lie

parallel to the coordinate axes and the length of any ste J has the form A0/2 N for some integer N.

This simple example also suggests that there is a great deal c,f flexibility in pattern search algorithms,

depending on how one specifies the pattern of points to be searct ed for the next iterate. These features will

be recurring themes in our discussion.

3. The General Pattern Search Algorithm. For simpli city, our discussion will focus primarily on

the case of unconstrained minimization,

minimize f ( x ) .

We assume that f is continuously differentiable, but that info'mation about the gradient of f is either

unavailable or unreliable. Since the inception of pattern search r mthods, various techniques have also been

used to apply them to solve the general nonlinear programming i_roblem

minimize f(x)

subject to c(x) > 0

_<x<u.



Morerecently,patternsearchmethodsspecificallydesignedfor constrainedproblemswith anattendant
convergencetheoryhavebeendevelopedin [6,9,8].

Theformof ageneralpatternsearchalgorithmisquitesimpleandnotallthat differentfromanyother
nonlinearminimizationalgorithm:first,findastepSk from the current iterate Xk; second, determine if that

step is acceptable; and finally, update the critical components of the algorithm. At iteration k pattern search

methods will consider steps in directions denoted by dk. We require dk to be a column of Ok, where Dk is

an n x Pk matrix (i.e., Dk represents the set of directions under consideration).

Generalized pattern search:

Given x0 E/R n, f(x0), Do C 1_ n×p°, and A 0 > 0,

for k ----0, 1,... until done do {

1. Find a step Sk = Akdk using the procedure Exploratory_oves(Ak, Dk).

2. If f(xk + Akdk) < f(xk), then Xk+l = xk + Akdk; otherwise, Xk+l = Xk.

3. Update(Ak, Dk)

In order to establish convergence results for this class of algorithms, wc will, by and by, place additional

conditions on Dk, the stcp calculation procedurc Exploratory_oves (), and the update procedure Update ().

The analysis reveals that we do not need to explicitly define Exploratory_/4oves() or Update(); for the

purposes of ensuring convergence it suffices to specify conditions on the results they produce. We refer the

interested reader to [16] for specific examples of Exploratory_oves() and Update() used for somc of the

more traditional pattern search methods.

4. Global Convergence Analysis. Here we will use global convergence of an optimization algorithm

to mean convergence to a stationary point of at least one subsequence of the sequence of iterates produced

by the algorithm. A slightly weaker assertion is

lira inf IIVf(xk)ll = O;
k----_:x_

this is equivalent to the previous property if the iterates {Xk} remain in a bounded set.

Classical analyses of such methods as steepest descent and globalized Newton methods rely in a fun-

damental way on Vf(x) to prove global convergence. Moreover, the technical conditions that make the

proof of global convergence for thesc algorithms possible, such as the Armijo-Goldstein-Wolfe conditions for

line-search methods, are actually built into the specification of gradient-based algorithms.

On the other hand, no such technical conditions appear in the description of pattern search algorithms

(witness the example in §2). The philosophy of pattern search algorithms (and direct search methods in

general) is best described by Hooke and Jeeves [5]:

We use the phrase "direct search" to describe sequential examination of trial solutions

involving comparison of each trial solution with the "best" obtained up to that time to-

gether with a strategy for determining (as a function of earlier results) what the next trial

solution will be. The phrase implies our preference, based on experience, for straightforward

search strategies which employ no techniques of classical analysis except where there is a

demonstrable advantage in doing so.t

lit might strike the modern reader as odd that Hooke and Jeeves would question the advantages of employing techniques

of "classical analysis"--meaning calculus--given the success of quasi-Newton algorithms. However, direct search methods

appeared in the late 1950s and early 1960s, a time at which derivative-based methods were not as efficient as today, and no



This passage captures the basic philosophy of the original worl, on direct search algorithms: an avoidance

of the explicit use or approximation of derivatives. Instead, t he developers of the original direct search

algorithms relied on heuristics to obtain what they considered promising search directions.

Nonetheless, we can prove global convergence results for patt_:rn search methods, even though this class of

algorithms was not originally developed with convergence analysis in mind. The analysis does ultimately rely

on _Tf(x); hence the assumption that f is continuously differentiable. But because pattern search methods

do not compute or approximate Vf(x), the relationship between these algorithms and their convergence

analysis is less direct than that for gradient-based algorithms.

4.1. The Ingredients of Global Convergence Analysis. We will now review the ideas that underlie

the global convergence analysis of line-search methods for uncol_strained minimization in order to compare

them with those for pattern search. We focus on line-search methods rather than trust-region methods since

the comparisons and contrasts with pattern search are simpler for line-search methods.

In order to prove global convergence of a line-search algori_:hm, at the very least one must show that

if the current iterate Xk is not a stationary point, then the algorithm will eventually find an iterate Xk+l

such that f(xk+l) < f(xk). This unavoidably leads to the contemplation of the gradient, since the gradient

ensures that a direction of descent can be identified: if xk is not a stationary point of f, then any direction

within 90 ° of --Vf(xk) is a descent direction. For our purpo_s, this will prove a crucial, if elementary,

observation: one does not need to know the negative gradient in order to improve f(x), one only needs a

direction of descent. Then, if one takes a short enough step in that direction, one is guaranteed to find a

point Xk+l such that f(Xk+l) < f(xk).

However, descent is not sufficient to ensure convergence: one must also rule out the possibility that the

algorithm can simply grind to a halt, converging to a point that is not a stationary point. One begins by

requiring at least one search direction to bc uniformly bounded away from orthogonality with --Vf(xk).

This ensures that the sequence of iterates cannot degenerate in ;o steps along directions that become ever

more orthogonal to the gradient while producing an ever dimini., hing improvement in f(x).

This restriction on the search directions is still not sufficient to prevent the iterates from converging to

points that are not stationary points. This unhappy situation can occur in two ways. First, there is the

pathology depicted in Fig. 4.1. Tile ellipse represents a level set of f(x), which in this case is a convex

quadratic. The steps taken are too long relative to the amount of decrease between successive iterates.

While the sequence of iterates {xk } produces a strictly decreasing sequence of objective values {f(xk)}, the

FIG. 4.1. Decrease is too small relative to th_ length of the step

general convergence analysis existed for any practical optimization algorithm, derivative-based or not. The Armijo-Goldstein-

Wolfe conditions [1, 4, 19], which form the basis for designing and analyzin_ what we now consider to be practical line-search

algorithms, were several years in the future; trust region algorithms [14] wet ._further still.



sequence of iterates converges to two nonstationary points.

The other pathology, depicted in Fig. 4.2, occurs when the amount of decrease between successive iterates

is too small relative to the amount of decrease initially seen in the direction from one iterate to the next.

This time the steps between successive iterates become excessively short. This sequence converges to a single

FIG. 4.2. Decrease is too small relative to the norm of the gradient

point which again is not a stationary point.

These pathologies lead to the second standard element of global convergence analysis: a mechanism that

controls the length of the step. Both of the preceding pathologies can be avoided, for instance, by requiring

that the amount of decrease in f(x) between successive iterates be "sufficient," where sufficient relates the

amount of decrease, the length of the step, and the gradient Vf(x). This is the purpose of the Armijo-

Goldstein-Wolfe conditions for line-search algorithms: given a suitable descent direction dk, we choose a step

length A k > 0 such that for some fixed a C (0, 1) and fixed/3 E (a, 1), xk+l = xk + Akdk satisfies both

(4.1) f(Xk+l ) <_ .f(Xk ) + aAk V f(xk )Tdk

and

(4.2) Vf(Xk+l)Tdk > _Vf(xk)Tdk.

The first condition precludes steps that are too long; the second condition precludes steps that are too short.

5. How Pattern Search Does Its Thing. We can summarize the devices that ensure the global

convergence of line-search methods for unconstrained minimization as follows:

1. The choice of a suitably good descent direction.

2. Step-length control:

(a) a mechanism to avoid steps that are too long, and

(b) a mechanism to avoid steps that are too short, where long and short refer to the sufficient

decrease conditions (4.1) and (4.2), respectively.

These mechanisms, which are explicitly built into line-search algorithms, all depend on information about

the gradient. However, pattern search algorithms do not assume such information, and thus do not and

cannot enforce such conditions. What, then, ensures the global convergence of pattern search algorithms?

The answer resembles the classical arguments for establishing the global convergence of line-search

methods, but necessarily with novel elements. As we shall see, pattern search algorithms are globally

convergent because:

1. At each iteration, they look in enough directions to ensure that a suitably good descent direction

will ultimately be considered.

2. They possess a reasonable back-tracking strategy that avoids unnecessarily short steps.
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FiG. 5.1. Examples of a minimal and a maximel positive basis for I:t2

3. They otherwise avoid unsuitable steps by restricting the nature of the step allowed between successive

itcrates, rather than by placing requirements on the amcunt of decrease realized between successive

iterates.

At the heart of the argument lies an unusual twist: we relax the r_ quirement of sufficient decrease and require

only simple decrease (f(xk+l) < f(xk)), but we impose strongest conditions on the form the step sk may

take. Furthermore, this trade-off is more than just a theoretical innovation: in practice, it permits useful

search strategies that are precluded by the condition of sufficient decrease.

5.1. Pattern Search as a Crypto-Gradient Method. The analysis begins by demonstrating that

a search direction not too far from the negative gradient is a:.ways available. This is accomplished by

considering a set of step directions O k sufficiently rich that it r ecessarily includes at least one acceptable

descent direction. In the absence of any estimate of --Vf(xk), p_ttern search algorithms hedge against the

fact that -Vf(xk) could point in any direction.

For the example in §2 the set of directions Dk is {-4-ei, i :-- 1,...,n}, so the set of prospective next

iterates has the simple form {xk 4- Ake_, i = 1,... ,n}. If a step sk = -4-Akei producing simple decrease on

f(xk) is found, then xk+l = xk + Ake_; otherwise, reduce A k aI_d try again. Other of the original pattern

search methods, such as the method of Hooke and Jeeves [5] or coordinate search [13], also include in Dk

the directions {-4-e_, i = 1,..., n}.

The analysis in [16] allows for more general conditions on t_e set of directions. In particular, Dk must

contain a set of the form {-4-p,, i = 1,..., n}, where Pl,... ,Pn is any linearly independent set of vectors.

One can allow this set to vary with k, so long as one restricts attention to a finite collection of such sets.

The discussion in [18] brought to our attention that even ess is required: it suffices that the set of

directions Dk contain a positive basis IIk for /R n [7]. In terms _,f the theory of positive linear dependence

[3], the positive span of a set of vectors {al,..., at} is the cone

{a E _n [ a = clal +... + c_ar, c_ >_ 0 for all i}.

The set {al,..., at) is called positively dependent if one of the ai's is a nonnegative combination of the

others; otherwise the set is positively independent. A positive [ asis is a positively independent set whose

positive span is/R n, i.e., a set of generators for a cone that hapl,ens to be a vector space. A positive basis

must contain at least n + 1 vectors and can contain no more then 2n vectors [3]; we refer to the former as

minimal and the latter as maximal; Fig. 5.1 demonstrates examples of both for R 2.

How do we know that at least one of the directions in Dk is no-; too orthogonal to the direction of steepest

descent, regardless of what -Vf(x) might be? A proof by pict 1re is given in Fig. 5.2; see [7] for details.



FIe. 5.2. A minimal positive basis for R 2 and the two worst cases for -Vf(xk)
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FIG. 5.3. Some possible patterns
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Consider the minimal positive basis {(1, 1) T, (1,--1) T, (--1, 0) T} depicted Fig. 5.2 as directions emanating

from Xk. Notice that the angles between thesc vectors are 90 °, 135 °, and 135 °. For any continuously

differentiable function f : _2 _ //{, if Xk is not a stationary point, then -Vf(xk) can be no more than

67.5 ° from one of the vectors in the positive basis, as shown in Fig. 5.2. Thus, including a positive basis IIk

in the set of directions D k guarantees that we can approximate the negative gradient in a way that cannot

be arbitrarily bad. This is the first step towards establishing global convergence.

5.2. The Underlying Lattice Structure. As it happens as it was meant to happen pattern search

methods are restricted in the nature of the steps they take. This ultimately turns out to be the reason pattern

search methods can avoid the pathologies illustrated in Fig. 4.1 and Fig. 4.2 without enforcing a sufficient

decrease condition.

Let Pk denote the set of candidates for the next iterate (i.e., Pk = xk + AkDk, by abuse of notation).

We call Pk the pattern, from which pattern search takes its name. Several traditional patterns are depicted

in Fig. 5.3.
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FIG. 5.4. The same patterns on a refinen,.enf_ of the grid

Though it does not appear to have been by any conscious design on the part of the original developers of

pattern search algorithms, these algorithms produce iterates tha_ lie on a finitely generated rational lattice,

as indicated in Fig. 5.3. More precisely, there exists a set of ger_erators gl,.-., gin, independent of k, such

that any iterate Xk can be written as

(5.1)

k is rational.where each c a

m

xk = xo + Ao __,c_g_,
i=1

Note that this structural feature means that the set of possible steps, and thus the set of possible

iterates, is known in advance and is independent of the actual ob}ective f(x). This is in obvious contrast to

gradient-based methods.

Furthermore _-and this is significant to the convergence analysis of pattern search by judicious (but

not especially restrictive) choice of the factors by which A k can be increased or decreased, we can establish

the following behavior of these algorithms. Suppose the set { x I f(x) < f(xo) } is bounded. Given any

A. > 0, there exists a finite subset (that depends on A.) of the lattice of all possible iterates such that xk

must belong to this subset until Ak < A.. That is, there is only a finite number of distinct values xk can

possibly have until such time as Ak < A.. This means that the only way to obtain an infinite sequence of

distinct xk is to reduce the step length parameter A k infinitely o_en so that liminfk_o¢ Ak = 0.

This also reveals another role played by the parameter Ak. ILeducing Ak increases the set of candidate

iterates by allowing us to search over a finer subset of the ratio ]al lattice of all possible iterates. This is

shown in Fig. 5.3 and Fig. 5.4. In these pictures, halving Ak 'efines the grid over which we arc tacitly

searching for a minimizer of f(x), while halving the minimum lci gth a step is allowed to have.

5.3. Putting It All Together. We return to the general pattern search algorithm:

Generalized pattern search:



Givenx0 c/R n, f(x0), Do E/R nxp°, and A 0 > 0,

for k = 0, 1,... until done do {

1. Find a step Sk = Akdk using the procedure Exploratory24oves(Ak, Dk).

2. If f(Xk + Akdk) < f(xk), then Xk+l = Xk + Akdk; otherwise, Xk+l = xk.

3. Update(Ak, Dk)

The step Sk returned by the Exploratory_oves() algorithm must satisfy two simple conditions:

1. The step returned must be an element of AkD k.

2. The step sk must satisfy either f(xk + sk) < f(xk) or sk = 0.

Furthermore, Sk may be 0 only if none of the steps in Akil k yielded decrease on f(xk).

The first condition prevents arbitrary steps along arbitrary directions; the second condition is a back-tracking

control mechanism that prevents us from taking shorter steps unless it is truly necessary.

As for the procedure Update() for Dk and Ak, we are free to make modifications to Dk before the

next iteration. Classical pattern search methods typically specify a single D = Dk for all k. Others make

substantive changes in response to the outcome of the exploratory moves. This is just one of many options

to consider when designing a pattern search method, and it leads to a great deal of flexibility in this class

of algorithms. There are conditions that must be satisfied to preserve the lattice structure, but these are

straightforward to satisfy in practice. The interested reader is referred to [7], for a complete discussion of

the technical conditions, and to [16], for a description of some traditional choices.

The rules for updating Ak arc also restricted by the need to preserve the algebraic structure of the

possible iterates. Historically, the popular choices have been to halve Ak at unsuccessful iterations, and

to either leave A k alone at successful iterations or possibly double it. The convergence analysis leads to

other possibilities: we can rescale A k by 0 6 {TW°,..., V_L }, where r is a rational number, {w0,..., WL} are

integers, L _> 2, w0 < 0 and Wn > O. This provides at least one option for reducing A k when back-tracking

is called for, and at least one option that does not reduce A k.

The proof of convergence now goes like this. Suppose xk is not a stationary point of f(x). Because at

least one of the directions dk in Ilk is necessarily a descent direction, we can always find an acceptable step

Akdk once we reduce A k sufficiently. Thus, we can always find xk+l with f(xk+l) < f(xk) for k in some

subsequence K.

Now, if liminfk--.oo IlVf(Xk)ll _ O, then for some _ > 0, IIVf(xk)ll > c for all k. Under this assumption

we can show that once Ak is sufficiently small relative to e, it will no longer be reduced. This is so because

one of the directions dk in Hk is sufficiently close to --Vf(xk) to be a uniformly good descent direction, and

IIVf(xk)l] is uniformly not too small, so we will have f(xk + Akdk) < f(Xk) without having to drive A k to

zero.

However, if liminfk--.oo Ak = A. > 0, then due to the lattice structure of the iterates, there can be only

finitely many possible xk, contradicting the fact that we have an infinite subsequence K with f(xk+l ) < f(xk)

for all k • g (assuming { z I f(x) < f(xo) } is bounded). Hence liminfk--._ HVf(xk)li = O.

The correlation between the fineness of the grid of possible iterates and the size of A k also explains why

long steps are not a problem. We have argued above that if lira infk--._ A k = 0, then lim infk_ o_ IIV f (xk) II =

0. Now, unless liminfk--.oo Ak ---- 0, there can be only a finite number of distinct iterates, and hence only

a finite number of long steps (or any type of step, for that matter). Thus even if an infinite number of

"bad" long steps are taken (i.e., steps that decrease f(x) but that violate (4.1)), the mere fact that there

are infinitely many distinct iterates means that liminfk_oo Ak = 0, and hence lim infk--.o_ IIVf(xk)ll = O.



5.4. Observations.Thisanalysismightsuggestaninterpretationof patternsearchasasearchover
successivelyfinerfinitegrids.If thefinitesetofcandidatesisexhaustedwithoutfindingapointthatimproves
f(x), then the grid is refined by reducing Ak and the process is repeated.

However, this interpretation is misleading insofar as it suggests that pattern search algorithms are

exceedingly inefficient. In practice, pattern search algorithms do aot resort to searching over all the points in

increasingly fine grids but instead behave more like a steepest descent method. In this sense, the analysis does

not reflect the actual behavior of the algorithm. This should not be entirely surprising since, unlike gradient-

based methods, the specification of pattern search algorithms does not obviously contain a mechanism

designed to guarantee convergence.

The situation is analogous to that of the simplex method in linear programming. Once one establishes

that the simplex method cannot cycle, the convergence of the aigorithm follows from the fact that there is

only a finite number of vertices that the simplex method can visit in its search for a solution. This means

that the simplex method could and does have a theoretical worst-case complexity that is exponential, but

in practice the simplex method has proven much more efficient than that.

Moreover, the actual behavior of pattern search in any single iteration can be very different than the

proof of convergence might be thought to suggest. The search can accept as the next iterate any point

in Pk that satisfies the simple decrease condition f(xk+l) < f(xk). In particular, the algorithm does not

necessarily need to examine every point in AkHk; it need only do so before deciding to reduce Ak, which is

the worst case.

In the best case, we may need only a single evaluation of f(x} to find an acceptable step. In contrast, in

a forward-difference gradient-based method one needs at least n+ 1 evaluations of f(x) (in addition to f(xk))

to find a new iteratc; n additional values of f(x) to approximat,., Vf(xk) and at least one more evaluation

of f(x) to decide whether or not to accept a new iterate.

In order to make progress, pattern search requires the eventual reduction of A k. The cost of discovering

the necessity of this step is one evaluation of f(x) for each direction defined by the positive basis Hk. For a

minimal positive basis of n+ 1 elements, this cost is the same as the cost of an unsuccessful quasi-Newton step

using a forward-difference approximation of the gradient; n evah_ations of f(x) to form the finite-difference

approximation to Vf(xk), and the evaluation of f(x) at the rejected x+. On the other hand, following an

unsuccessful step in the latter algorithm, one gets to reuse the _ radicnt approximation; it is not clear how

best to reuse information from unsuccessful iterations of pattern search in subsequent iterations.

5.5. The Resulting Convergence Results. Let 12 = { x I f(x) _ f(xo) }, and suppose f is C 1 on

a neighborhood of 12.

Theorem If 12 is bounded, then the iterates produced by a pat_;ern search algorithm satisfy

liminf HVf(xk)ll = 0.
k---* oo

If, in addition, limk__._ Ak = 0 and we require f(xk+l) < f(xk + Sk) for all Sk E AkIIk, the steps associated

with the positive basis, and the columns of Dk are bounded in n,)rm uniformly in k, then wc have

lira IlVf(xk)ll = 0.
k----*oo

By way of comparison, we obtain the result limk-_ I[Vf(._:k)tt = 0 for line-search methods without

the assumption that 12 is bounded [12]. However, we must also :'equire sufficient decrease between iterates

according to (4.1) (4.2), rather than just simple decrease, that is, f(xk+l) < f(Xk).

10



Fortrust-regionmethods,with theassumptionthatVf(x) isuniformlycontinuous(butagain,without
theassumptionthat _ is bounded),requiringonlysimpledecreasef(Xk+l) < ](xk) suffices to prove that

limk__._ IIVf(xk)II ----0, provided the approximation of the Hessian does not grow too rapidly in norm [15].

With a sufficient decrease condition, one obtains the stronger result [11], limk__._ IIVf(xk)II = 0. However,

for either result Vf(x) is used in both the fraction of Cauchy decrease condition on the step and the update

of the trust radius.

Thus, under the hypothesis that _t is bounded, the global convergence results for pattern search algo-

rithms are as strong as those for gradient-based methods. This might seem surprising, but it simply reflects

just how little one needs to establish global convergence. Pattern search is sufficiently like steepest descent

that it works.

This leads to one caveat for users: like steepest descent, pattern search methods are good at improving

an initial guess and finding a neighborhood of a local solution, but fast local convergence should not be

expected. In general, one can expect only a linear rate of local convergence.

6. Concluding Remarks. We have tried to explain how and why pattern search works while refraining

from a detailed description of the convergence analysis. Once one understands the essential ideas, the proof

of global convergence is reasonably straightforward, if sometimes tedious. Precisely because pattern search

methods have so little analytical information explicitly built into them, it takes some effort to extract an

assurance that they actually do work. However, as we have tried to indicate, many of the ideas are familiar

from standard analysis of nonlinear programming algorithms. The novelty lies in the restriction of the

iterates to a lattice, which allows us to relax the conditions on accepting steps.

The ideas discussed here also appear in the analysis of pattern search methods for constrained mini-

mization [6, 9, 8]. For readers who would like to explore the connections between pattern search methods

and gradient-based algorithms in greater detail, we particularly recommend [10].
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